On the Analysis and Interpretation of Inhomogeneous Quadratic Forms as Receptive Fields

نویسندگان

  • Pietro Berkes
  • Laurenz Wiskott
چکیده

In this letter, we introduce some mathematical and numerical tools to analyze and interpret inhomogeneous quadratic forms. The resulting characterization is in some aspects similar to that given by experimental studies of cortical cells, making it particularly suitable for application to second-order approximations and theoretical models of physiological receptive fields. We first discuss two ways of analyzing a quadratic form by visualizing the coefficients of its quadratic and linear term directly and by considering the eigenvectors of its quadratic term. We then present an algorithm to compute the optimal excitatory and inhibitory stimuli--those that maximize and minimize the considered quadratic form, respectively, given a fixed energy constraint. The analysis of the optimal stimuli is completed by considering their invariances, which are the transformations to which the quadratic form is most insensitive, and by introducing a test to determine which of these are statistically significant. Next we propose a way to measure the relative contribution of the quadratic and linear term to the total output of the quadratic form. Furthermore, we derive simpler versions of the above techniques in the special case of a quadratic form without linear term. In the final part of the letter, we show that for each quadratic form, it is possible to build an equivalent two-layer neural network, which is compatible with (but more general than) related networks used in some recent articles and with the energy model of complex cells. We show that the neural network is unique only up to an arbitrary orthogonal transformation of the excitatory and inhibitory subunits in the first layer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interpretation of neuronal activity in neural networks

In this paper we will compare the performance of two techniques (the Maximum Likelihood Estimation (MLJZ) and the Population Vector (PV)) for estimating the interpretation of neuronal activity in a population of neurons. Although such a comparison has been made before, so far only homogeneous distributions of receptive fields have been investigated. Since the performance of both methods depends...

متن کامل

Witt rings of quadratically presentable fields

This paper introduces an approach to the axiomatic theory of quadratic forms based on {tmem{presentable}} partially ordered sets, that is partially ordered sets subject to additional conditions which amount to a strong form of local presentability. It turns out that the classical notion of the Witt ring of symmetric bilinear forms over a field makes sense in the context of {tmem{quadratically p...

متن کامل

A Higher Order B-Splines 1-D Finite Element Analysis of Lossy Dispersive Inhomogeneous Planar Layers

In this paper we propose an accurate and fast numerical method to obtain scattering fields from lossy dispersive inhomogeneous planar layers for both TE and TM polarizations. A new method is introduced to analyze lossy Inhomogeneous Planar Layers. In this method by applying spline based Galerkin’s method of moment to scalar wave equation and imposing boundary conditions we obtain reflection and...

متن کامل

On the real quadratic fields with certain continued fraction expansions and fundamental units

The purpose of this paper is to investigate the real quadratic number fields $Q(sqrt{d})$ which contain the specific form of the continued fractions expansions of integral basis element  where $dequiv 2,3( mod  4)$ is a square free positive integer. Besides, the present paper deals with determining the fundamental unit$$epsilon _{d}=left(t_d+u_dsqrt{d}right) 2left.right > 1$$and  $n_d$ and $m_d...

متن کامل

Approximating the Distributions of Singular Quadratic Expressions and their Ratios

Noncentral indefinite quadratic expressions in possibly non- singular normal vectors are represented in terms of the difference of two positive definite quadratic forms and an independently distributed linear combination of standard normal random variables. This result also ap- plies to quadratic forms in singular normal vectors for which no general representation is currently available. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neural computation

دوره 18 8  شماره 

صفحات  -

تاریخ انتشار 2006